Neuromorphic computing draws inspiration from the brain, and Steven Brightfield, chief marketing officer for Sydney-based startup BrainChip, says that makes it perfect for use in battery-powered devices doing AI processing.
“The reason for that is evolution,” Brightfield says. “Our brain had a power budget.” Similarly, the market BrainChip is targeting is power constrained. ”You have a battery and there’s only so much energy coming out of the battery that can power the AI that you’re using.”
Today, BrainChip announced their chip design, the Akida Pico, is now available. Akida Pico, which was developed for use in power-constrained devices, is a stripped-down, miniaturized version of BrainChip’s Akida design, introduced last year. Akida Pico consumes 1 milliwatt of power, or even less depending on the application. The chip design targets the extreme edge, which is comprised of small user devices such as mobile phones, wearables, and smart appliances that typically have severe limitations on power and wireless communications capacities. Akida Pico joins similar neuromorphic devices on the market designed for the edge, such as Innatera’s T1 chip, announced earlier this year, and SynSense’s Xylo, announced in July 2023.
Neuron Spikes Save Energy
Neuromorphic computing devices mimic the spiking nature of the brain. Instead of traditional logic gates, computational units—referred to as ‘neurons’—send out electrical pulses, called spikes,to communicate with each other. If a spike reaches a certain threshold when it hits another neuron, that one is activated in turn. Different neurons can create spikes independent of a global clock, resulting in highly parallel operation.
A particular strength of this approach is that power is only consumed when there are spikes. In a regular deep learning model, each artificial neuron simply performs an operation on its inputs: It has no internal state. In a spiking neural network architecture, in addition to processing inputs, a neuron has an internal state. This means the output can depend not only on the current inputs, but on the history of past inputs, says Mike Davies, director of the neuromorphic computing lab at Intel. These neurons can choose not to output anything if, for example, the input hasn’t changed sufficiently from previous inputs, thus saving energy.
“Where neuromorphic really excels is in processing signal streams when you can’t afford to wait to collect the whole stream of data and then process it in a delayed, batched manner. It’s suited for a streaming, real-time mode of operation,” Davies says. Davies’ team recently published a result showing their Loihi chip’s energy use was one-thousandth of a GPU’s use for streaming use cases.
Akida Pico includes its neural processing engine, along with event processing and model weight storage SRAM units, direct memory units for spike conversion and configuration, and optional peripherals. Brightfield says in some…
Read full article: BrainChip Unveils Ultra-Low Power Akida Pico for AI Devices
The post “BrainChip Unveils Ultra-Low Power Akida Pico for AI Devices” by Dina Genkina was published on 10/01/2024 by spectrum.ieee.org
Leave a Reply