How Large Language Models Are Changing My Job

How Large Language Models Are Changing My Job

Generative artificial intelligence, and large language models in particular, are starting to change how countless technical and creative professionals do their jobs. Programmers, for example, are getting code segments by prompting large language models. And graphic arts software packages such as Adobe Illustrator already have tools built-in that let designers conjure illustrations, images, or patterns by describing them.

But such conveniences barely hint at the massive, sweeping changes to employment predicted by some analysts. And already, in ways large and small, striking and subtle, the tech world’s notables are grappling with changes, both real and envisioned, wrought by the onset of generative AI. To get a better idea of how some of them view the future of generative AI, IEEE Spectrum asked three luminaries—an academic leader, a regulator, and a semiconductor industry executive—about how generative AI has begun affecting their work. The three, Andrea Goldsmith, Juraj Čorba, and Samuel Naffziger, agreed to speak with Spectrum at the 2024 IEEE VIC Summit & Honors Ceremony Gala, held in May in Boston.

Click to read more thoughts from:

  1. Andrea Goldsmith, Dean of Engineering at Princeton University.
  2. Juraj Čorba, senior expert on digital regulation and governance, Slovak Ministry of Investments, Regional Development
  3. Samuel Naffziger, senior vice president and a corporate fellow at Advanced Micro Devices

Andrea Goldsmith

Andrea Goldsmith is Dean of Engineering at Princeton University.

There must be tremendous pressure now to throw a lot of resources into large language models. How do you deal with that pressure? How do you navigate this transition to this new phase of AI?

Andrea J. Goldsmith

Andrea Goldsmith: Universities generally are going to be very challenged, especially universities that don’t have the resources of a place like Princeton or MIT or Stanford or the other Ivy League schools. In order to do research on large language models, you need brilliant people, which all universities have. But you also need compute power and you need data. And the compute power is expensive, and the data generally sits in these large companies, not within universities.

So I think universities need to be more creative. We at Princeton have invested a lot of money in the computational resources for our researchers to be able to do—well, not large language models, because you can’t afford it. To do a large language model… look at OpenAI or Google or Meta. They’re spending hundreds of millions of dollars on compute power, if not more. Universities can’t do that.

But we can be more nimble and creative. What can we do with language models, maybe not large language models but with smaller language models, to advance the state of the art in different domains? Maybe it’s vertical domains of using, for example, large language models for better prognosis of disease, or for prediction of cellular channel changes, or in materials science to decide what’s…

Read full article: How Large Language Models Are Changing My Job

The post “How Large Language Models Are Changing My Job” by Glenn Zorpette was published on 06/06/2024 by