Navigating the Angstrom Era – IEEE Spectrum

Navigating the Angstrom Era – IEEE Spectrum

This is a sponsored article brought to you by Applied Materials.

The semiconductor industry is in the midst of a transformative era as it bumps up against the physical limits of making faster and more efficient microchips. As we progress toward the “angstrom era,” where chip features are measured in mere atoms, the challenges of manufacturing have reached unprecedented levels. Today’s most advanced chips, such as those at the 2nm node and beyond, are demanding innovations not only in design but also in the tools and processes used to create them.

At the heart of this challenge lies the complexity of defect detection. In the past, optical inspection techniques were sufficient to identify and analyze defects in chip manufacturing. However, as chip features have continued to shrink and device architectures have evolved from 2D planar transistors to 3D FinFET and Gate-All-Around (GAA) transistors, the nature of defects has changed.

Defects are often at scales so small that traditional methods struggle to detect them. No longer just surface-level imperfections, they are now commonly buried deep within intricate 3D structures. The result is an exponential increase in data generated by inspection tools, with defect maps becoming denser and more complex. In some cases, the number of defect candidates requiring review has increased 100-fold, overwhelming existing systems and creating bottlenecks in high-volume production.

Applied Materials’ CFE technology achieves sub-nanometer resolution, enabling the detection of defects buried deep within 3D device structures.

The burden created by the surge in data is compounded by the need for higher precision. In the angstrom era, even the smallest defect — a void, residue, or particle just a few atoms wide — can compromise chip performance and the yield of the chip manufacturing process. Distinguishing true defects from false alarms, or “nuisance defects,” has become increasingly difficult.

Traditional defect review systems, while effective in their time, are struggling to keep pace with the demands of modern chip manufacturing. The industry is at an inflection point, where the ability to detect, classify, and analyze defects quickly and accurately is no longer just a competitive advantage — it’s a necessity.

Applied Materials

Adding to the complexity of this process is the shift toward more advanced chip architectures. Logic chips at the 2nm node and beyond, as well as higher-density DRAM and 3D NAND memories, require defect review systems capable of navigating intricate 3D structures and identifying issues at the nanoscale. These architectures are essential for powering the next generation of technologies, from artificial intelligence to autonomous vehicles. But they also demand a new level of precision and speed in defect detection.

In response to these challenges, the semiconductor industry is witnessing a growing demand for faster and more accurate defect review systems. In particular,…

Read full article: Navigating the Angstrom Era – IEEE Spectrum

The post “Navigating the Angstrom Era – IEEE Spectrum” by Wiley was published on 04/16/2025 by spectrum.ieee.org